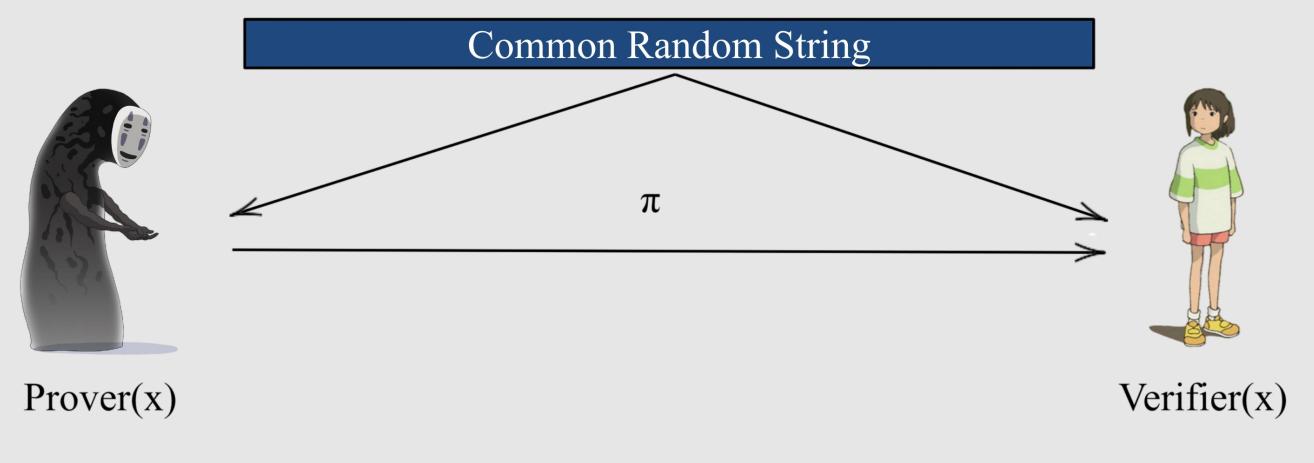
Strong Batching for Non-Interactive Statistical Zero-Knowledge by **Preserving Entropy under Hash Composition.**

Changrui Mu¹ supervisor: Prashant Nalini Vasudevan¹

¹National University of Singapore

This poster is based on the "Strong Batching for Non-Interactive Statistical Zero-Knowledge" [Mu, Nassar, Rothblum, and Vasudevan; Eurocrypt2024].

Non-Interactive Statistical Zero Knowledge Proofs [GMR89; BFM88].



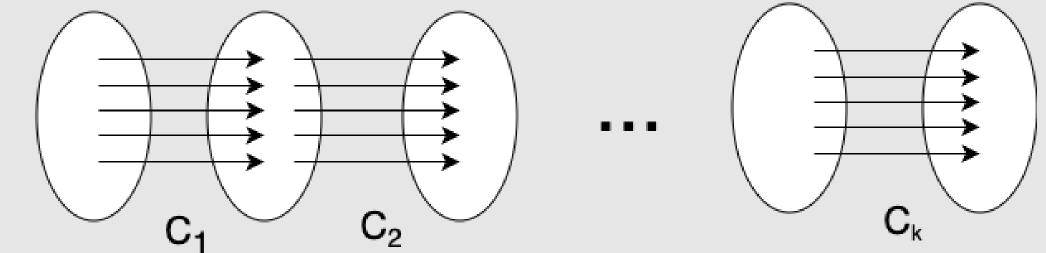
Theorem 2: NISZK Strong Batching [MNRV24]

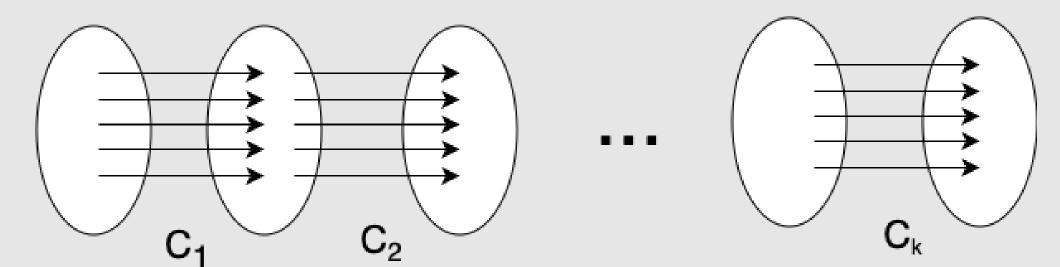
Suppose a problem Π has NISZK protocol with m(n) bits of communication and CRS length, then for any $k \in O(2^{n^{0.01}})$, there exists a NISZK protocol that proves k instances x_1, x_2, \ldots, x_k with $poly(m, \log k)$ communication and CRS length.

Reduce k instances to one

If k circuits are length preserving, direct composition gives a new length-preserving instance:

 $\bar{C} = C_k \circ \cdots \circ C_1$





Scan for handouts!

1 Completeness: If $x \in YES$: Verifier accept with 99%.

- **2** Soundness: If $x \in NO$: No Prover can make Verifier accept with probability more than $\frac{1}{3}$.
- Statistical Zero-Knowledge:

There exists some efficient simulator algorithm Sim such that on any YES input $x \in YES$, it can simulate a distribution *statistically* close to the Verifier's view in the protocol:

 $Sim(x) \approx_s CRS || \pi.$

We call the class of problems that have non-interactive statistical zero-knowledge proofs **NISZK** problems.

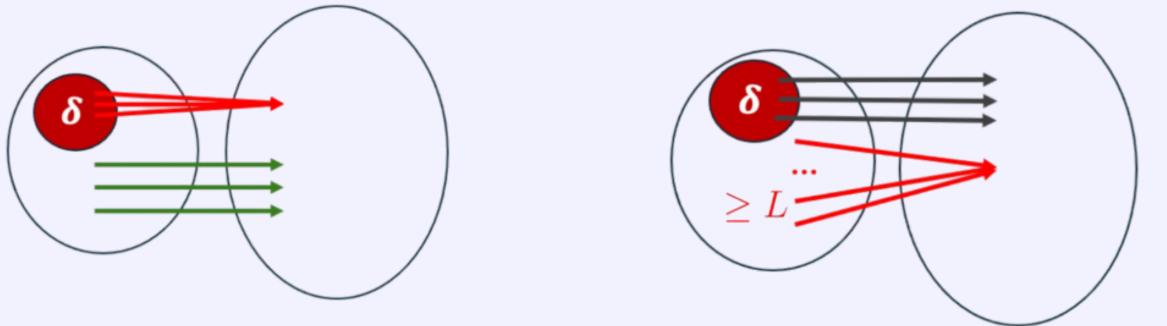
NISZK Complete Problems [SCPY98; GSV99]

The class \mathbf{NISZK} has complete problems. That is, there exists a problem Π such that:

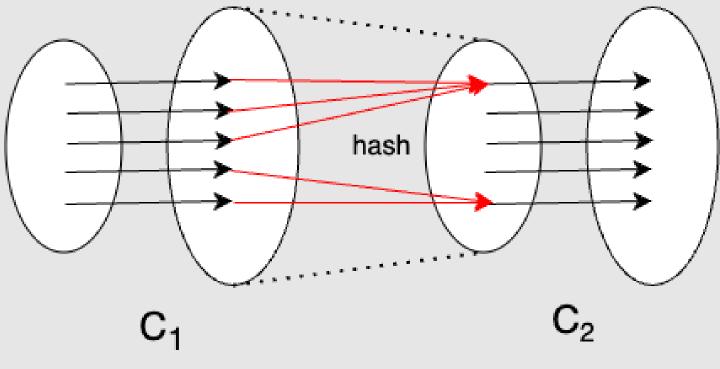
- \blacksquare Π can be proved in non-interactive statistical zero-knowledge proof.
- Every promise problem that has non-interactive statistical zero-knowledge proof can be reduced to Π .

Theorem 1: Approximate Injectivity (AI) [KRRSV20; KRV21]

Input: circuit $C: \{0,1\}^n \rightarrow \{0,1\}^t$ $t \ge n$

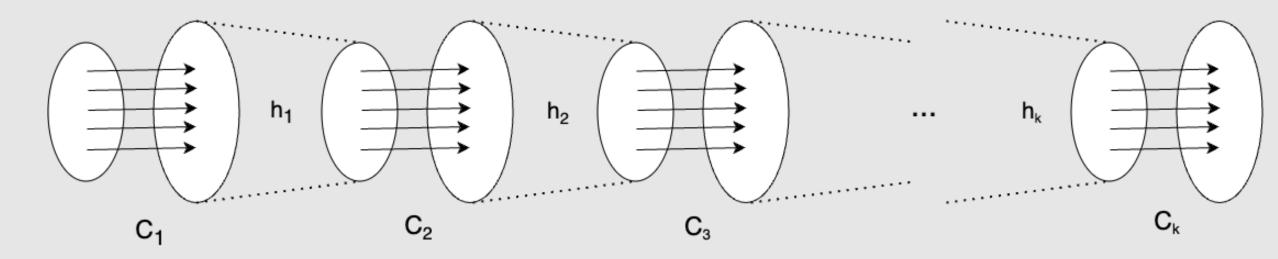


When t > n, we can not compose directly, and using random hash functions to connect them is a natural idea. However, even one round of such composition on injective circuits will introduce massive collisions.



We observe and prove that the collision probability is preserved under the hash composition

 $\bar{C} = h_k \circ C_k \circ \cdots \circ h_1 \circ C_1.$



Specifically:

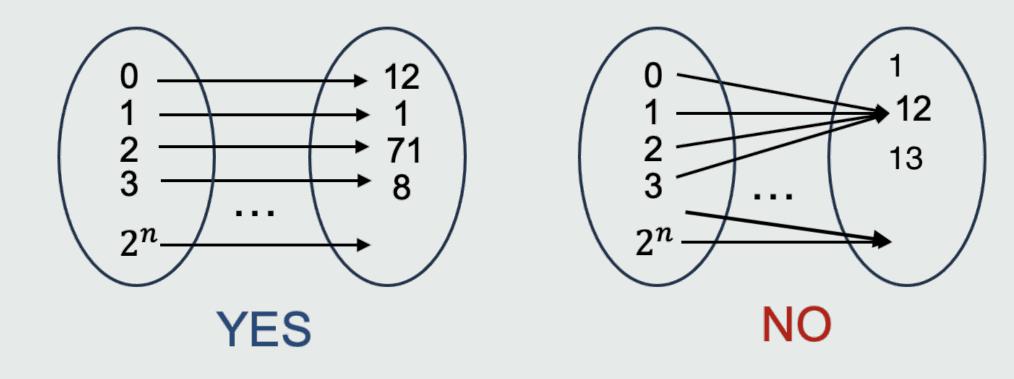
If $C_1, \ldots, C_k \in \mathsf{YES}$, with 1-negl probability: $cp(\bar{C}) = \Pr_{x_1, x_2 \leftarrow \{0,1\}^n} [\bar{C}(x_1) = \bar{C}(x_2)] \le \frac{2k+1}{2^n}$ or, the Rényi Entropy (order 2) is big:

C is **YES**(AI_{δI}) if it is injective on all but δ -fraction of inputs

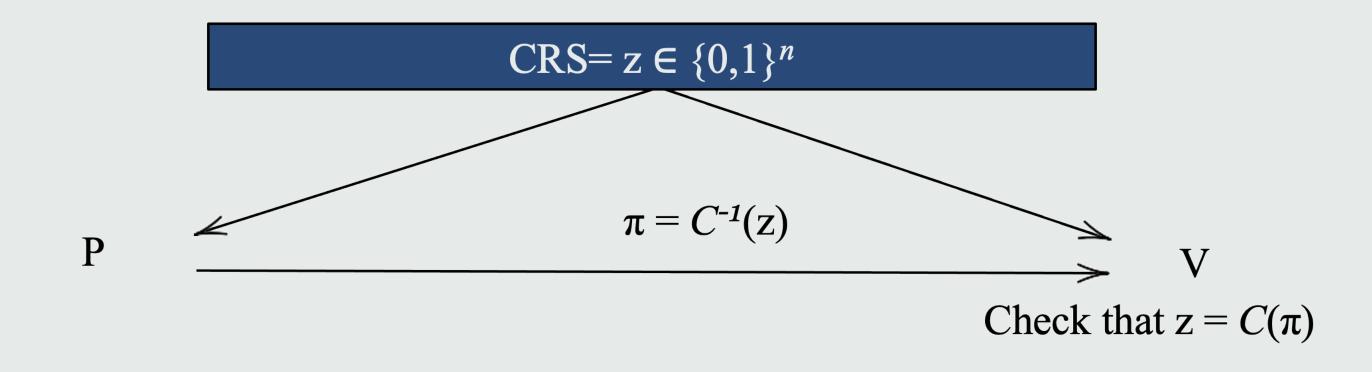
C is NO(AI_{δI}) if it is L-to-1 on all but δ -fraction of inputs

 $AI_{\delta,L}$ is *NISZK-complete* for $L(n) < 2^{n^{0.1}}, \delta > 2^{-n^{0.1}}$.[KRRSV20; KRV21]

How is Injectivity related to Non-Interactive Statistical Zero-Knowledge?



□ Input: length-preserving circuit $C: \{0,1\}^n \rightarrow \{0,1\}^n$



 $H_2(\bar{C}) = -\log cp(\bar{C}) \ge n - \log k + 1.$ If some $C_i \in NO$, the Max Entropy of \overline{C} is small: $H_0(\bar{C}) = \log |support(\bar{C})| \le n - \log L, \ L \in O(2^{n^{0.01}}).$

Reduce Entropy to Uniformity/Injectivity

Asymptotic Equipartition Property + Load balancing	Input	Yes/No		Problem Name	Completeness	
	C ₁ ,,C _k	All Injective	Exists L-to-1	Approximate Injectivity	NISZK-Complete [KRRSV]	Leftover Hash Lemma
	$\bar{C}_{k}=(h_{k} C_{k} \dots h_{1} C_{1})$	High Smooth Rényi Entropy	Low Max Entropy	Smooth Entropy Approx	NISZK-Complete (This work)	
	Ĉ=h, h(Ē _k)	Close to uniform	Far from uniform	Statistically Close to Uniformity	NISZK-Complete [GSV]	
	Ĉ(x ₁),,Ĉ(x _k), g, g(x ₁ ,, x _k)	Injective	L-to-1	Approximate Injectivity	NISZK-Complete [KRRSV]	

The prover and verifier will reduce k instances of a NISZK-complete problem to one instance, and run one execution of NISZK protocol on the single instance. Note that the communication cost of the protocol is dependent on the input/output length of the circuit, and thus will not increase much.

What's More

- Derandomization: The Collision Probability of the Composited Circuit can be modelled by a Read-Once Branching Program. Nisan's pseudorandom generator[Nis92] is used to sample hash functions, which derandomizes the Common Random String (CRS).
- [KRV24]: **Doubly-Efficient** Batch Verification in SZK for **NISZK** ∩ **UP**.
- Completeness: Perfect, because any value of z has a preimage of the permutation. • Soundness: NO case, the circuit is L-to-one, a random z doesn't have a preimage with probability at least 1-1/L.
- **ZK**: simulator samples x and output $(crs = C(x), \pi = x)$. Perfect Zero-Knowledge

NISZK Batching [KRRSV20; KRV21; MNRV24]

In batching verification setting, there are k instances to verify, we want to verify them in SZK proof with communication better than naive repetition. Specifically, if m is the number of communication bits required for one instance, we want the communication cost for verifying kinstances to be much less than $k \cdot m$.

	Communication Complexity	Round Complexity	Interaction
[KRRSV20; KRV21]	O(poly(m) + k)	k	Interactive
This Work	$poly(m, \log k)$	1	Non-interactive

References

- O. Keret, R. D. Rothblum, and P. N. Vasudevan. Doubly-Efficient Batch Verification in Statistical Zero-Knowledge. Cryptology ePrint Archive, Paper 2024/781. https://eprint.iacr.org/ 2024/781. 2024. URL: https://eprint.iacr.org/2024/781.
- C. Mu, S. Nassar, R. D. Rothblum, and P. N. Vasudevan. "Strong Batching for Non-Interactive Statistical Zero-Knowledge". In: IACR Cryptol. ePrint Arch. (2024). https://eprint.iacr. org/2024/229. URL: https://eprint.iacr.org/2024/229.
- I. Kaslasi, R. D. Rothblum, and P. N. Vasudevan. "Public-Coin Statistical Zero-Knowledge Batch Verification Against Malicious Verifiers". In: Advances in Cryptology EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques. Vol. 12698. Lecture Notes in Computer Science. Springer, 2021, pp. 219–246. DOI: 10.1007/978-3-030-77883-5\ 8.
- I. Kaslasi, G. N. Rothblum, R. D. Rothblum, A. Sealfon, and P. N. Vasudevan. "Batch Verification for Statistical Zero Knowledge Proofs". In: Theory of Cryptography - 18th International *Conference, TCC 2020.* Vol. 12551. Lecture Notes in Computer Science. Springer, 2020, pp. 139–167. DOI: 10.1007/978-3-030-64378-2\ 6.
- O. Goldreich, A. Sahai, and S. Vadhan. "Can Statistical Zero Knowledge Be Made Non-interactive? or On the Relationship of SZK and NISZK". In: Advances in Cryptology - CRYPTO' 99. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 467–484. ISBN: 978-3-540-48405-9.
- A. D. Santis, G. D. Crescenzo, G. Persiano, and M. Yung. "Image Density is Complete for Non-Interactive-SZK (Extended Abstract)". In: Automata, Languages and Programming, 25th International Colloquium, ICALP'98, Proceedings. Vol. 1443. Lecture Notes in Computer Science. Springer, 1998, pp. 784–795. DOI: 10.1007/BFb0055102.
- N. Nisan. "Pseudorandom generators for space-bounded computation". In: Comb. 12.4 (1992), pp. 449–461. DOI: 10.1007/BF01305237.
 - S. Goldwasser, S. Micali, and C. Rackoff. "The Knowledge Complexity of Interactive Proof Systems". In: SIAM J. Comput. 18.1 (1989), pp. 186–208. DOI: 10.1137/0218012.
- M. Blum, P. Feldman, and S. Micali. "Non-Interactive Zero-Knowledge and Its Applications (Extended Abstract)". In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing. ACM, 1988, pp. 103–112. DOI: 10.1145/62212.62222.

EASIT2024, Tokyo, Japan