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This poster is based on the“Strong Batching for Non-Interactive Statistical Zero-Knowledge” [Mu, Nassar, Rothblum, and Vasudevan; Eurocrypt2024].

Non-Interactive Statistical Zero Knowledge Proofs [GMR89; BFM88].

1 Completeness: If x ∈ YES: Verifier accept with 99%.
2 Soundness: If x ∈ NO: No Prover can make Verifier accept with probability more than 1

3.
3 Statistical Zero-Knowledge:

There exists some efficient simulator algorithm Sim such that on any YES input x ∈ YES, it
can simulate a distribution statistically close to the Verifier’s view in the protocol:

Sim(x) ≈s CRS||π.
We call the class of problems that have non-interactive statistical zero-knowledge proofs NISZK
problems.

NISZK Complete Problems [SCPY98; GSV99]

The class NISZK has complete problems. That is, there exists a problem Π such that:
Π can be proved in non-interactive statistical zero-knowledge proof.
Every promise problem that has non-interactive statistical zero-knowledge proof can be reduced
to Π.

Theorem 1: Approximate Injectivity (AI) [KRRSV20; KRV21]

AIδ,L is NISZK-complete for L(n) < 2n
0.1

, δ > 2−n
0.1

.[KRRSV20; KRV21]

How is Injectivity related to Non-Interactive Statistical
Zero-Knowledge?

Completeness: Perfect, because any value of z has a preimage of the permutation.
Soundness: NO case, the circuit is L-to-one, a random z doesn’t have a preimage with
probability at least 1-1/L.
ZK: simulator samples x and output (crs = C(x), π = x). Perfect Zero-Knowledge

NISZK Batching [KRRSV20; KRV21; MNRV24]

In batching verification setting, there are k instances to verify, we want to verify them in SZK
proof with communication better than naive repetition. Specifically, if m is the number of
communication bits required for one instance, we want the communication cost for verifying k
instances to be much less than k ·m.

Communication Complexity Round Complexity Interaction
[KRRSV20; KRV21] O(poly(m) + k) k Interactive

This Work poly(m, log k) 1 Non-interactive

Theorem 2: NISZK Strong Batching [MNRV24]
Suppose a problem Π has NISZK protocol with m(n) bits of communication and CRS length, then
for any k ∈ O(2n

0.01
), there exists a NISZK protocol that proves k instances x1, x2, . . . , xk with

poly(m, log k) communication and CRS length.

Reduce k instances to one

If k circuits are length preserving, direct composition gives a new length-preserving instance:
C̄ = Ck ◦ · · · ◦ C1

When t > n, we can not compose directly, and using random hash functions to connect them is a
natural idea. However, even one round of such composition on injective circuits will introduce
massive collisions.

We observe and prove that the collision probability is preserved under the hash composition
C̄ = hk ◦ Ck ◦ · · · ◦ h1 ◦ C1.

Specifically:
If C1, . . . , Ck ∈ YES, with 1-negl probability: cp(C̄) = Pr

x1,x2←{0,1}n
[C̄(x1) = C̄(x2)] ≤ 2k+1

2n

or, the Rényi Entropy (order 2) is big:
H2(C̄) = − log cp(C̄) ≥ n− log k + 1.

If some Ci ∈ NO, the Max Entropy of C̄ is small:
H0(C̄) = log |support(C̄)| ≤ n− logL, L ∈ O(2n

0.01

).

Reduce Entropy to Uniformity/Injectivity

The prover and verifier will reduce k instances of a NISZK-complete problem to one instance, and
run one execution of NISZK protocol on the single instance. Note that the communication cost of
the protocol is dependent on the input/output length of the circuit, and thus will not increase
much.

What’s More

Derandomization: The Collision Probability of the Composited Circuit can be modelled by a
Read-Once Branching Program. Nisan’s pseudorandom generator[Nis92] is used to sample hash
functions, which derandomizes the Common Random String (CRS).
[KRV24]: Doubly-Efficient Batch Verification in SZK for NISZK ∩UP.
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